Bis $\left\{N\right.$-[3-(4-chlorophenylimino)-2-phenyl-1-propenyl]-4-chloroanilinato- $\left.N, N^{\prime}\right\}$ nickel(II)

By W. S. Sheldrick*
Gesellschaft für Biotechnologische Forschung mbH., Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim, Federal Republic of Germany
and R. Knorr and H. Polzer
Institut für Organische Chemie der Universität München, Karlstrasse 23, D-8000 München 2, Federal Republic of Germany

(Received 21 October 1978; accepted 14 November 1978)

Abstract

C}_{42} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{Ni}, \quad \mathrm{Ni}\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)_{2}\), monoclinic, $C 2 / c, a=10.103$ (3), $b=19.574$ (5), $c=$ 18.937 (5) $\AA, \beta=96.24(2)^{\circ}, M_{r}=791 \cdot 3, Z=4$, $D_{x}=1.41 \mathrm{Mg} \mathrm{m}^{-3}$. The molecule contains a crystallographic C_{2} axis. The coordination at Ni is pseudotetrahedral with average $\mathrm{Ni}-\mathrm{N}=1.945$ (2) \AA. Considerable deviations from an idealized tetrahedral geometry around Ni occur through both stretching and diagonal twisting of the N_{4} tetrahedron.

Introduction. Cell dimensions were determined by a least-squares fit to settings for 15 reflexions $\pm(h k l)$ on a Syntex $P 22_{1}$ diffractometer ($\mathrm{Cu} K \pi$ radiation, $\lambda=$ $1.54178 \AA$). Data collection was carried out in the $\theta-$ 2θ mode ($3<2 \theta<135^{\circ}$) with graphite-monochromated $\mathrm{Cu} K \alpha$ radiation. A numerical absorption correction was applied. After application of the observation criterion $F>3 \cdot 0 \sigma(F), 2889$ unique reflexions were retained for use in the structure analysis. The structure was solved by Patterson and difference syntheses and refined by a blocked fullmatrix least-squares procedure with anisotropic temperature factors for the non-hydrogen atoms. The H atom positional parameters were refined freely with individual isotropic temperature factors. The terminal value of R_{w} was 0.057 with $R=0.053$. The weights were $w=k\left[\sigma^{2}\left(F_{o}\right)+g F_{o}^{2}\right]^{-1}$ where g refined to $0 \cdot 000629$. Complex neutral-atom scattering factors were employed (Cromer \& Waber, 1965; Cromer \& Liberman, 1970). Table 1 lists the final non-hydrogen atom coordinates, Table 2 the bond lengths and angles. \dagger

[^0]0567-7408/79/030739-03\$01.00

Discussion. The very small electronic perturbation represented by the transmission of unpaired spin density from a Ni atom into an organic ligand has been shown to provide a powerful tool for conformational analysis (Knorr, Polzer \& Bischler, 1975). Thus the apparent interplanar angle of the $\mathrm{C}(3)$ phenyl substituent ($R^{3}=\mathrm{Ph}$) in pseudotetrahedral Ni complexes of type (1) may be inferred from the paramagnetically induced ${ }^{1} \mathrm{H}$ NMR shifts (Knorr, Weiss, Polzer \& Bischler, 1975).

Table 1. Positional parameters $\left(\times 10^{4}\right)$ for the nonhydrogen atoms

		y	z
	x	$1203(1)$	2500
Ni	0	$12004(1)$	$1940(1)$
$\mathrm{N}(1)$	$826(2)$	1884	
$\mathrm{C}(2)$	$698(3)$	$2562(1)$	$2008(1)$
$\mathrm{C}(3)$	0	$2895(2)$	2500
$\mathrm{~N}(4)$	$-755(2)$	$518(1)$	$1832(1)$
$\mathrm{C}(5)$	$-642(3)$	$-155(1)$	$1911(1)$
$\mathrm{C}(6)$	0	$-493(2)$	2500
$\mathrm{C}(11)$	$1468(3)$	$1655(1)$	$1353(1)$
$\mathrm{C}(12)$	$1201(3)$	$1935(2)$	$680(2)$
$\mathrm{C}(13)$	$1846(4)$	$1694(2)$	$120(2)$
$\mathrm{C}(14)$	$2751(3)$	$1173(2)$	$234(2)$
$\mathrm{C}(15)$	$3010(4)$	$878(2)$	$887(2)$
$\mathrm{C}(16)$	$2361(3)$	$115(2)$	$1451(2)$
$\mathrm{Cl}(14)$	$3575(1)$	$891(1)$	$-472(1)$
$\mathrm{C}(31)$	0	$3660(2)$	2500
$\mathrm{C}(32)$	$-1110(3)$	$4023(1)$	$2642(2)$
$\mathrm{C}(33)$	$-1095(3)$	$4731(2)$	$2650(2)$
$\mathrm{C}(34)$	0	$5085(2)$	2500
$\mathrm{C}(41)$	$-1393(3)$	$762(1)$	$1171(1)$
$\mathrm{C}(42)$	$-1169(4)$	$476(2)$	$530(2)$
$\mathrm{C}(43)$	$-1749(4)$	$743(2)$	$-106(2)$
$\mathrm{C}(44)$	$-2567(3)$	$1302(2)$	$-97(2)$
$\mathrm{C}(45)$	$-2790(4)$	$1596(2)$	$529(2)$
$\mathrm{C}(46)$	$-2224(3)$	$1328(2)$	$1165(2)$
$\mathrm{Cl}(44)$	$-3260(1)$	$1644(1)$	$-901(1)$
$\mathrm{C}(61)$	0	$-1256(2)$	2500
$\mathrm{C}(62)$	$72(4)$	$-1622(2)$	$1880(2)$
$\mathrm{C}(63)$	$55(6)$	$-2335(2)$	$1881(3)$
$\mathrm{C}(64)$	0	$-2683(3)$	2500

© 1979 International Union of Crystallography

Table 2. Bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{Ni} \quad 1.9$	1.947 (2)	$\mathrm{N}(4)-\mathrm{Ni} \quad 1.943$	1.943 (2)
$\mathrm{C}(2)-\mathrm{N}(1) \quad 1.3$	1.341 (3)	$\mathrm{C}(11)-\mathrm{N}(1) \quad 1.4$	1.419 (4)
$\mathrm{C}(3)-\mathrm{C}(2) \quad 1.30$	1.390 (3)	$\mathrm{C}(31)-\mathrm{C}(3) \quad 1.498$	1.498 (5)
$\mathrm{C}(5)-\mathrm{N}(4) \quad 1.33$	1.331 (3)	$\mathrm{C}(41)-\mathrm{N}(4) \quad 1.426$	1.426 (3)
$\mathrm{C}(6)-\mathrm{C}(5) \quad 1.39$	1.395 (3)	$\mathrm{C}(61)-\mathrm{C}(6) \quad 1.493$	1.493 (5)
$\mathrm{C}(12)-\mathrm{C}(11) \quad 1.38$	1.386 (4)	$\mathrm{C}(16)-\mathrm{C}(11) \quad 1.388$	1.388 (4)
$\mathrm{C}(13)-\mathrm{C}(12) \quad 1.38$	1.388 (5)	$\mathrm{C}(14)-\mathrm{C}(13) \quad 1.3$	1.370 (5)
$\mathrm{C}(15)-\mathrm{C}(14) \quad 1.36$	1.364 (5)	$\mathrm{Cl}(14)-\mathrm{C}(14) \quad 1.74$	1.742 (4)
$\mathrm{C}(16)-\mathrm{C}(15) \quad 1.3$	1.392 (5)	$\mathrm{C}(32)-\mathrm{C}(31) \quad 1.3$	1.379 (3)
$\mathrm{C}(33)-\mathrm{C}(32) \quad 1.38$	1.387 (4)	$\mathrm{C}(34)-\mathrm{C}(33) \quad 1.367$	1.367 (4)
$\mathrm{C}(42)-\mathrm{C}(41) \quad 1.378$	1.378 (4)	$\mathrm{C}(46)-\mathrm{C}(41) \quad 1.390$	1.390 (4)
$\mathrm{C}(43)-\mathrm{C}(42) \quad 1.38$	1.386 (4)	$\mathrm{C}(44)-\mathrm{C}(43) \quad 1.3$	1.371 (5)
$\mathrm{C}(45)-\mathrm{C}(44) \quad 1.360$	1.360 (5)	$\mathrm{Cl}(44)-\mathrm{C}(44) \quad 1.73$	1.739 (3)
$\mathrm{C}(46)-\mathrm{C}(45) \quad 1.37$	1.379 (5)	$\mathrm{C}(62)-\mathrm{C}(61) \quad 1.38$	1.384 (4)
$\mathrm{C}(63)-\mathrm{C}(62) \quad 1.3$	1.396 (5)	$\mathrm{C}(64)-\mathrm{C}(63) \quad 1.36$	1.362 (6)
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(1)$	$106 \cdot 2(1)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Ni}$	125.0 (2)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Ni}$	118.0 (2)	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)$	(2) 116.5 (2)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(1)$	93.6 (1)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	126.1(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	124.1 (3)	$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(2)$	2) 118.0 (2)
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{Ni}$	126.0 (2)	$\mathrm{C}(41)-\mathrm{N}(4)-\mathrm{Ni}$	$116 \cdot 6$ (2)
$\mathrm{C}(41)-\mathrm{N}(4)-\mathrm{C}(5)$	(5) $117.2(2)$	$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(4)$	92.7 (1)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(4)$	126.0 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(5)$	$123 \cdot 3$ (3)
$\mathrm{C}(61)-\mathrm{C}(6)-\mathrm{C}(5)$) 118.3 (2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)$	(1) 122.3 (2)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{N}(1)$	(1) 118.8 (2)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	(12) 118.9 (3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11$	(11) $120 \cdot 5$ (3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	(12) 119.5 (3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13$	(13) $121.2(3)$	$\mathrm{Cl}(14)-\mathrm{C}(14)-\mathrm{C}(13)$	(13) 118.7 (3)
$\mathrm{Cl}(14)-\mathrm{C}(14)-\mathrm{C}(15)$	(15) $120 \cdot 1$ (3)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	(14) 119.6 (3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11$	(11) $120 \cdot 3$ (3)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(3)$	(3) 121.0 (2)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31$	(31) $120 \cdot 8$ (3)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(32)$	(32) 118.0 (3)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32$	(32) $120 \cdot 5$ (3)	C(33)-C(34)-C(33)	(33) 119.2 (4)
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{N}(4)$	(4) 122.3 (2)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{N}(4)$	(4) 119.4 (2)
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42$	(42) 118.3 (3)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	(41) 121.2 (3)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42$	(42) 119.3 (3)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	(43) 120.3 (3)
$\mathrm{Cl}(44)-\mathrm{C}(44)-\mathrm{C}(43)$	(43) 118.8 (3)	$\mathrm{Cl}(44)-\mathrm{C}(44)-\mathrm{C}(45)$	(45) 120.8 (3)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	(44) $120 \cdot 6$ (4)	C(45)-C(46)-C(41)	(41) 120.2 (3)
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(6)$	(6) $121.2(2)$	C(63)-C(62)-C(61)	(61) 121.0 (4)
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(62$	(62) 117.7 (4)	$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(62)$	(62) 120.1 (4)
$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(63$	(63) 120.1 (6)		

It was also demonstrated that asymmetrically substituted complexes of type (1) with $R^{2} \neq R^{4}$ may be chiral and configurationally stable on the NMR time scale (Knorr, Weiss, Polzer \& Räpple, 1977). We report here the X -ray structure of the title compound (2), which represents the first such study of a pseudotetrahedral bis-chelate with N_{4} coordination and provides conformational data for (2) in the crystalline state.

(2): $R^{1}=p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{5}$
$R^{2}=R^{4}=\mathrm{H}$
$R^{3}=\mathrm{C}_{6} \mathrm{H}_{5}$
(1)

A perspective view of a molecule of the title compound is shown in Fig. 1. The molecules display a crystallographic C_{2} axis. The observed severe distor-
tions from a perfect T_{d} symmetry about Ni are of a twofold nature. Like many other pseudotetrahedral chelate complexes, (2) is elongated along its primary C_{2} axis bisecting the endocyclic $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles. The extent of this stretching of the N_{4} tetrahedron may be gauged by a comparison of the endocyclic chelate angles of $93.6(1)$ and $92.7(1)^{\circ}$ with that of $106.2(1)^{\circ}$ for the exocyclic $\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)$ angle. This provides independent evidence to settle a long-standing controversy bearing on the $3 d$-orbital sequence (Lin \& Orgel, 1964; Eaton \& Phillips, 1965), at least for its geometrical supposition in (2). Secondly, the diagonaltwist distortion of the N_{4} tetrahedron is 21.5° from an orthogonal $D_{2 d}$ arrangement of the chelate moieties and is associated with a widening of the exocyclic $\mathrm{N}(1)-$ $\mathrm{Ni}-\mathrm{N}(4)^{\prime}$ angle to $131.8(1)^{\circ}$. Such pseudotetrahedral flattening along the secondary molecular C_{2} axis (bisecting the aforementioned exocyclic angles) may be compared to similar estimates from theoretical calculations (Elian \& Hoffmann, 1975). An alternative description of the distortion from T_{d} symmetry may be sought in the dihedral angles formed by the normals to adjacent polytopal faces (Muetterties \& Guggenberger, 1974). For a perfect N_{4} tetrahedron all six dihedral angles are $109 \cdot 5^{\circ}$. With the nomenclature of Muetterties \& Guggenberger for (2), δa_{3} and δa_{5} are $84 \cdot 2^{\circ}$ [edges $\mathrm{N}(1) \cdots \mathrm{N}(4)^{\prime}$ and $\mathrm{N}(1)^{\prime} \cdots \mathrm{N}(4)$], δa_{1} and δa_{6} are 127.9 and 127.5° [edges $\mathrm{N}(1) \cdots \mathrm{N}(1)^{\prime}$ and $\left.\mathrm{N}(4) \cdots \mathrm{N}(4)^{\prime}\right]$ and δa_{2} and δa_{4} are 119.4° [edges $N(1) \cdots N\left(4^{\prime}\right)$ and $\left.N(1) \cdots N(4)\right]$. The difference between the latter dihedral-angle pairs is a measure of the elongation of the N_{4} tetrahedron.

Only very small deviations from planarity are found for the chelate rings. Distances from the least-squares plane through $\mathrm{Ni}, \mathrm{N}(1), \mathrm{C}(2)$ and $\mathrm{C}(3)$ are $\mathrm{Ni}-0.003$, $\mathrm{N}(1) 0.008, \mathrm{C}(2)-0.010, \mathrm{C}(3) 0.004 \AA$ and from that through $\mathrm{Ni}, \mathrm{N}(4), \mathrm{C}(5)$ and $\mathrm{C}(6), \mathrm{Ni}-0.003, \mathrm{~N}(4)$ $0.009, C(5)-0.010, C(6) 0.004 \AA$. Reflecting the decreased strength of the $\mathrm{Ni}-\mathrm{N} \sigma$-bond in tetrahedral as opposed to square-planar complexes, the average $\mathrm{Ni}-\mathrm{N}$ distance of 1.945 (2) \AA in (2) is $0.08 \AA$ longer

Fig. 1. The molecule (2) in perspective with the numbering scheme.
than that in the planar chelate N_{4} complex bis(3-methyl-1-phenyl-5-p-tolylformazyl)nickel(II) (Dale, 1967) or in the macrocyclic N_{4}-coordinated Ni complex related to (1) by $R^{1} R^{1}$-bridging (Hanić, Handlović \& Lindgren, 1972). It is also $0.025 \AA$ longer than the $\mathrm{Ni}-\mathrm{N}$ distance in the planar chelate $\mathrm{O}_{2} \mathrm{~N}_{2}$ complex bis(N-isopropyl-3-methylsalicylaldiminato)nickel(II) (Braun \& Lingafelter, 1966) but shorter than those of 1.970 and $1.974 \AA$ in the pseudotetrahedral chelate $\mathrm{O}_{2} \mathrm{~N}_{2}$ complexes $\operatorname{bis}(N$-isopropylsalicylaldiminato) nickel(II) (Fox, Orioli, Lingafelter \& Sacconi, 1964) and bis(N-isopropyl-3-ethylsalicylaldiminato)nickel(II) (Braun \& Lingafelter, 1967). The chelate ring systems are symmetrical with average $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ distances of 1.336 and $1.392 \AA$. They are inclined to one another at 67.7° and make respective interplanar angles of 46.6 and 42.5° with their p-chlorophenyl and 34.4 and 35.4° with their phenyl substituents. The thermal motions of the phenyl substituents on $C(3)$ and $C(6)$ are more pronounced than those on $\mathrm{N}(1)$ and $\mathrm{N}(4)$, thereby correlating with NMR evidence for thermally excited rotation of the former phenyl rings on the basis of the temperature dependence of their ${ }^{1} \mathrm{H}$ NMR shifts (Knorr, Weiss, Polzer \& Bischler, 1975). An important stabilizing factor favouring the tetrahedral ground state must be the interaction between the phenyl rings on $N(1)$ and $N(4)$. These make an interplanar angle of 16.5° to one another at a distance between their plane normals of $4.07 \AA$. Seven of the constituent C atoms are at intermolecular distances of less than $4.0 \AA$ from
members of the other phenyl group. Nevertheless, rotation of such phenyl groups in (2) is fast in solution on the NMR time scale.

References

Braun, R. L. \& Lingafelter, E. C. (1966). Acta Cryst. 21, 546-553.
Braun, R. L. \& Lingafelter, E. C. (1967). Acta Cryst. 22, 780-787.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Dale, D. (1967). J. Chem. Soc. A, pp. 278-287.
Eaton, D. R. \& Phillips, W. D. (1965). J. Chem. Phys. 43, 392-398.
Elian, M. \& Hoffmann, R. (1975). Inorg. Chem. 14, 1058-1076.
Fox, M. R., Orioli, P. L., Lingafelter, E. C. \& Sacconi, L. (1964). Acta Cryst. 17, 1159-1166.

Hanić, F., Handlović, M. \& Lindgren, O. (1972). Collect. Czech. Chem. Commun. 37, 2119-2131.
Knorr, R., Polzer, H. \& Bischler, E. (1975). J. Am. Chem. Soc. 97, 643-644.
Knorr, R., Weiss, A., Polzer, H. \& Bischler, E. (1975). J. Am. Chem. Soc. 97, 644-646.

Knorr, R., Weiss, A., Polzer, H. \& Räpple, E. (1977). J. Am. Chem. Soc. 99, 650-651.
Lin, W. C. \& Orgel, L. E. (1964). Mol. Phys. 7, 131-136.
Muetterties, E. L. \& Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.

Dicarbonyl(η-triphenylphosphoniumcyclopentadienylide)cobalt(I) Tetracarbonylcobaltate(-I)

By N. C. Baenziger and R. M. Flynn
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
and N. L. Holy
Department of Chemistry, Western Kentucky University, Bowling Green, Kentucky 42101, USA

(Received 21 June 1978; accepted 20 November 1978)

Abstract

Co}\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{P}\right)(\mathrm{CO})_{2}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right], \quad \mathrm{C}_{29} \mathrm{H}_{19}-\) $\mathrm{Co}_{2} \mathrm{O}_{6} \mathrm{P}$, monoclinic, $P 2_{1} / c, a=9.777(2), b=$ 16.797 (6), $c=16.799$ (5) $\AA, \beta=96.11$ (2) ${ }^{\circ}, Z=4$, $M_{r}=611.80, D_{x}=1.48 \mathrm{Mg} \mathrm{m}^{-3}, R=\left[\sum w|\Delta F|^{2}\right]$ $\sum w F_{o}^{2}{ }^{1 / 2}=0.0535$ based on 3155 independent reflections. The structure consists of two σ-bonded carbonyl groups and the cyclopentadienylide moiety π bonded to the cobalt(I) to form the cation with square-

 0567-7408/79/030741-04\$01.00planar coordination [the carbonyl-Co-carbonyl bond angle in the cation is $94.5(3)^{\circ}$] and a tetrahedral $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$anion.

Introduction. Intensity data (15706 total reflections, 4823 independent reflections, 3155 with intensities greater than three standard deviations above background) were collected to $\sin \theta / \lambda=0.6 \AA^{-1}$ using a (C) 1979 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.
 \dagger Lists of structure factors, anisotropic thermal parameters and H atom positional parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34066 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

